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Abstract This paper proposes a series of fractional-
order control methods (FOCMs) based on fractional
calculus (FC) for a class of general nonlinear systems.
In order to deal with the nonlinearities and uncertain-
ties caused by both external and internal factors, the
designed control schemes are adaptive, robust, fault-
tolerant and do not involve detailed information of the
system model. Besides, FC is combined to improve
the control performance, especially in higher control
accuracy, better anti-interference ability and stronger
robustness. For a comprehensive consideration of the
practical systems, three different actuator conditions
are separately discussed, and the FOCMs are estab-
lished aiming at these three different situations, respec-
tively, and proved by theoretical analysis. The inverted
pendulum system is adopted as simulation object, and
the fractional-order schemes are verified and compared
with integer-order controller and traditional PID con-
troller. Simulation results make it clear that the pro-
posed FOCMs are superior to other two schemes in
control precision, robustness and anti-interference abil-
ity.
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1 Introduction

Refer tomost research on the nonlinear systems, a great
number of efforts have been devoted to study the con-
trol methods. For example, PID control [1,2], adaptive
fuzzy control [3], sliding mode control [4], etc. [5,6],
are widely used for the nonlinear systems. Since nearly
all the practical systems are prone to nonlinearity, it
brings the problem into researchers’ view: how can the
designed controllers excellently deal with the nonlin-
earities anduncertaintieswhen thepractical influencing
factors are taken into consideration?

In recent years, a lot of works have been done for
the nonlinear systems to handle the problems caused
by both external environments and internal situations.
For example, in [7,8], the systems were considered
with unpredictable disturbances and input limitations.
Besides, as a significant factor having an effect on sys-
tem safety performance, actuator failures also cannot
be ignored when it comes to the controller design, that
is, the controller is required to have a capacity of fault
tolerance [9,10]. Furthermore, due to the linear or non-
linearway the control inputs act on the system,Ali et al.
[11] and Song et al. [12], respectively, proposed control
methods for the affine and non-affine nonlinear sys-
tems. Also, some special actuator characteristics like
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asymmetric saturation and asymmetric dead zone [13]
should be noted and well addressed [14]. From the
above analysis, it can be concluded that although some
studies have been put forward to cope with the non-
linearities and uncertainties, very few of them have
noticed the parameter perturbations and considered the
different actuator conditions simultaneously. In addi-
tion, most existing works have a requirement for the
specific values of the system parameters [4], which are
difficult to acquire in the practical systems. And for the
research on fault-tolerant control methods (e.g., [15]),
most of them tend to be fairly complicated and have
difficulty in applications. Thus, it is necessary for this
paper to establish a control scheme,which does not rely
on the unknown system parameters and can well adapt
to the parameter changes as well as different actuator
conditions. Simultaneously, the controller should also
have a capacity of fault tolerance in order to guarantee
the safety performance of the system in the presence of
unpredictable actuator failures.Motivated by the above
analysis, an integer-order adaptive fault-tolerant con-
trol method can be proposed, which has an analogous
structure in [16]. However, considering the work is
described in integer-order form, it is almost certain that
it has deficiency in control effects, and it is still a prob-
lem that how to improve the control performance when
the practical systemshave a higher requirement for con-
trol accuracy, anti-interference capacity and robustness
[17]?

With regard to the issue above, fractional calcu-
lus (FC) is considered [18]. Different from tradi-
tional integer-order conception, fractional derivatives
and integrals can better reflect the system characteris-
tics and can describe the practical systems more accu-
rately [19–21]. Furthermore, with the development of
technology, the complicated calculation of FC can be
well solved [22], and more and more attention has
been attracted to FC-based control method design to
improve the control performance. This is because FC
has genetic attenuation property, which is reflected in
that FC has an attenuated memory and it is a storage
based on the current time. Specifically, according to
the definition of FC, it can be seen as an integral trans-
formation of the function which only focuses on the
information close to the current time while integer-
order stores all the information from the beginning
to the present [23]. With this special characteristic of
FC, the control energy can be released gently to make
appropriate correction under the current time. It means

that the control system can implement suitable control
actions although system inertia and time delay exist,
thus less oscillation process and smaller overshoot can
be realized. As a result, comparing with the integer-
order controllers, FC-based controllers ensure better
system performance, especially in higher control accu-
racy and better anti-interference capacity aspects [24].
Today, more and more researchers have noted this spe-
cial property of FC, and the research on FC-based con-
trolmethods has been increasingly raised. For example,
Espinosa et al. [25] adopted fractional-order control
to realize accurate tracking control of the system, and
a FC-based sliding mode control method was derived
to deal with the system uncertainty [26]. According
to [27], it has been proved that the FOCM can bet-
ter achieve the stable-state performance than integer-
ordermethod and classical PIDmethod. In [28],Adeleh
et al. addressed the tracking problem of a class of
nonlinear dynamic systems and achieved better track-
ing results with the utilization of FC-based methods.
Besides, by comparing the fractional-order PID con-
troller with integer-order PID and traditional PID con-
trol methods, the superiority of fractional-order con-
trol was certified [29]. From the mentioned studies, it
is not difficult to summarize that the FC-based control
method can achieve better control performance than
integer-order control method, which provides evidence
for its application in this paper.

Inspired by the analysis above, the paper puts for-
ward a series of fractional-order adaptive fault-tolerant
control methods based on FC, with the purpose to cope
with the parametric uncertainty and nonlinearity, exter-
nal disturbances as well as unpredictable actuator fail-
ures of a class of nonlinear systems, and simultaneously
improve the control performance. In sum, the innova-
tions are concluded as below:

1. A series of control methods are established for a
class of general nonlinear systems, which are adap-
tive, fault-tolerant and do not rely on the detailed
information of the system model. The controller
can deal with the system nonlinearities and uncer-
tainties, as well as different actuator conditions.

2. The FC is combined so as to improve the con-
trol performance. Theoretical analysis and simula-
tion studies jointly prove that the FOCM can real-
ize higher control accuracy, better anti-interference
ability and stronger robustness than integer-order
method and PID method.
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3. The proposed FOCMs can be easily established
with simple structure, which are more favorable
to practical applications compared with currently
available methods.

The rest of the paper is organized as follows: In
Sect. 2, three different actuator conditions are sepa-
rately discussed, for which three system dynamic mod-
els are established, respectively, and some assumptions
are put forward as the basis of the following analysis. A
series of FOCMs based on FC are proposed aiming at
three different actuator situations in Sect. 3, and the sys-
tems under the control schemes are proved to be stable
by Lyapunov stability theory and Matignon’s stability
theorem. In Sect. 4, the inverted pendulum system is
employed as simulation object, and the FOCMs under
three conditions are tested and compared with integer-
order controller and traditional PID controller, which
certifies the superiority of the fractional-order schemes.
Finally, some conclusions are drawn in Sect. 5.

2 Model establishment and problem statement

Consider a class of general nonlinear systems which
have their form as follows:
ẋk = xk+1, k = 1, 2, . . . , n − 1

ẋn = g(X)ua + f (X)
(1)

where xk ∈ R is the system state with k = 1, 2, . . . , n,
and X is the state vector that X = [x1, x2, . . . , xn]T . In
addition, it should be mentioned that x1 = x is defined
for convenience. ua is the actual control input of the
system. g(X) represents the time-varying and uncertain
control gain of the system. f (X) is the lumped uncer-
tainties considering external disturbances and system
nonlinearities.

In order to describe the practical systemsmore com-
prehensively, three different actuator situations are ana-
lyzed.

Case 1 Actuator under healthy condition
In this situation, the designed control input can

totally work on the system, which means

ẋk = xk+1, k = 1, 2, . . . , n − 1

ẋn = g(X)u + f (X)
(2)

where u is the object to be addressed in the paper.

Although the above dynamic model can generally
describe most systems, there still exist inevitable actu-
ator failures which could cause serious safety problem

to the system. Thus, it is necessary to consider the actu-
ator faults during the modeling process.

Case 2 Actuator failures with linear characteristics
Note that u to be designed under this condition is not

the same as ua any more, as the relationship between
these two factors can be described as ua = ρu + δ,
in which ρ is named “actuator health indicator” and is
identically defined in [30]. It should be mentioned that
ρ reflects the degree of actuator failure and satisfies
0 < ρ < 1, for the actuator is assumed to be partly
faulty instead of totally invalid in this paper, thus u can
always have an effect on ua . It is readily shown that the
involvement of ρ has previously considered the possi-
ble actuator faults in the controller design,whichmakes
the system does not rely on precise fault detection and
diagnosis [15]. δ is the part brought about by actua-
tor failures, which is uncertain and bounded. Then, the
system dynamic model in this case can be rewritten as

ẋk = xk+1, k = 1, 2, . . . , n − 1

ẋn = g(X)ρu + g(X)δ + f (X)
(3)

where ua = ρu + δ is applied, and other symbols are
defined the same as before.

Case 3 Actuator failureswith nonlinear characteristics
In this case, the actuator is describedwith some non-

linear characteristics like asymmetric saturation and
asymmetric dead zone, which can be intuitively seen in
Fig. 1. ψ(u) is a nonlinear function of u, where ur > 0
and ul > 0 represent the uncertain saturation values
of ψ(u). Thus, u affects the system in a nonlinear way
that ua = ρψ(u) + ζ , where ζ is defined the same as
δ. Then, the system dynamic model can be presented
as

ẋk = xk+1, k = 1, 2, . . . , n − 1

ẋn = g(X)ρψ(u) + g(X)ζ + f (X)
(4)

with other notations having the same meanings as
described before.

It can be summarized from the above description
that in case 1, the system is affine nonlinear system
with healthy actuator. In case 2, the system is affine
system considering actuator failures. While the system
in case 3 is in the non-affine formwith actuator failures.
To our best knowledge, very few research has simul-
taneously considered the different actuator conditions,
and the paper will fill this gap.
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Fig. 1 Actuator with asymmetric saturation and asymmetric
dead zone characteristics

In this work, the control objective is to design a suit-
able controller with the purpose to realize asymptot-
ically stable tracking of the ideal system trajectories.
Three actuator conditions are separately discussed, that
is, considering the actuator under completely healthy
condition (ua = u), actuator failures with linear char-
acteristics (ua = ρu + δ) and actuator failures with
nonlinear characteristics (ua = ρψ(u) + ζ ). Specif-
ically, for the system described by formula (2), (3)
and (4), the designed control input u can make sure
that the tracking error E = [e1, e2, . . . , en]T (e1 = e)
converges toward 0 as t → ∞, where E = X − X∗,
with X∗ = [x∗

1 , x
∗
2 , . . . , x

∗
n ]T (x∗

1 = x∗) representing
the ideal system trajectory.

Before introducing the control laws, the following
assumptions should be given first.

Assumption 1 The control gain is unknown but satis-
fies the constrain that there exists unknown constants
λ and λ̄ making 0 < λ ≤ |g(X)| ≤ λ̄ < ∞, which
ensures the boundedness of g(·). Besides, it is assumed
that g(·) > 0 without loss of generality in this work.

Assumption 2 There is | f (X)| ≤ ω0 + ω1|x | +
ω2|x (1)| + · · · + ωn|x (n−1)| ≤ ωφ(X), in which
φ(X) > 0 is a scale function of X and satisfies φ =
1+ |x | + |x (1)| + · · · + |x (n−1)|. ω ≥ 0 is an unknown
constant which has ω = max{ω0, ω1, . . . , ωn} with
i = 0, 1, . . . , n. It is assumed that the boundedness of
X indicates the boundedness of φ and further ensures
f to be bounded.

Assumption 3 There are unknown constants δ̄ > 0
and ζ̄ > 0, respectively, making δ and ζ satisfy 0 <

|δ| ≤ δ̄ < ∞ and 0 < |ζ | ≤ ζ̄ < ∞.

Assumption 4 The ideal systemstate x∗, togetherwith
its derivatives (from 1st order to the nth order) are
thought to be known, smooth and bounded.

Remark 1 It should be stressed that these assumptions
are commonly used in the existing works and suitable
for most nonlinear systems. Assumptions 1 and 4 are
always utilized to address the tracking control problem
for the systems (2)(3)(4) [31]. Assumption 2 makes
it feasible to extract core information from the sys-
tem uncertainties, and it can be done for any practical
systems with only crude model information [32]. For
Assumption 3, in line with most existing research on
fault-tolerant control [33], it can be assumed that the
faults vary slowly enough with time so as to realize
fault detection and diagnosis, while Assumption 3 does
not have such variation rate restriction, which is more
practical.

3 Control method design and stability analysis

Before the controller design, some explanations about
FC should be introduced firstly.

For the fractional integration, it often means
Riemann–Liouville (R–L) integral, but for fractional
differential, there are several definitions can be referred
to [34]. Caputo definition is applied in this paper, since
the initial condition for the Caputo differential equa-
tions has the same form as integer-order differential
equations, and it has widespread applications in practi-
calmodeling process [35].Whenwemention fractional
integral and Caputo derivative, it usually refers to the
left R–L integral and the left Caputo derivative, respec-
tively. The mathematical explanations are presented as
follows.

Definition 1 [36] The left-sided R–L fractional inte-
gral on [t0, T ]

t0 I
r
t f (t) = 1

Γ (r)

∫ t

t0
(t − τ)r−1 f (τ )dτ (5)

where r > 0 is the fractional order. t > t0. Γ (z) =∫ ∞
o e−t t z−1dt is Euler Gamma function with Re(z) >

0.
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Definition 2 [36] The left-sided Caputo fractional
derivative on [t0, T ]

t0D
r
t f (t) = 1

Γ (n − r)

∫ t

t0
(t − τ)n−r−1 f (n)(τ )dτ (6)

where r > 0 and n is a positive integer satisfying n −
1 < r < n. t > t0. Besides, it is worth noting that
f (t) is function belonging to the space of absolutely
continuous function that f (t) ∈ ACn([t0, T ]).

In addition, the following property holds:

Property 1 [36] Suppose that 0 < r < 1, then

t0D
r
t t0 I

r
t f (t) = f (t) (7)

where f (t) ∈ C[t0, T ].
Based on these preparations, the control laws can

be proposed with separately taking the three different
actuator conditions into consideration.

3.1 Controller design under healthy actuator
condition (ua = u)

In order to carry out the control law design, the follow-
ing filtered variable should be proposed firstly

s0 = α1e1 + α2e2 + · · ·αn−1en−1 + en (8)

which can be written as

s0 = α1e + α2e
(1) + · · · + αn−1e

(n−2) + e(n−1) (9)

where ėk = ek+1(k = 1, 2, . . . , n − 1) is employed.
αk with k = 1, 2, . . . , n − 1 are constants chosen by
the designer with the constrain that the polynomial in
the form of p(n−1) + αn−1 p(n−2) · · · + α1 p satisfies
Hurwitz condition. According to [37], it can be proved
that if s0 is proved to be asymptotically stable, e and
its derivatives (up to (n − 1)th order) will converge
toward 0 as t → ∞. Furthermore, the boundedness of
s0 indicates the boundedness of e and its derivatives.

To put forward the FOCM, the generalized
fractional-order filtered variable should be adopted:

s = s0 + β0 I
r
t s0 (10)

where β > 0 is selected by the designer, and r is the
fractional order which satisfies 0 < r < 1. 0 and t are,
respectively, lower and upper bound of the fractional
integral. In order to carry out the controller design, the
following Lemma is needed.

Lemma 1 Consider the following autonomous system

0D
r
t x(t) = ax(t), x(0) = x0 (11)

where 0 < r < 1. Using the result of Matignon [38], it
can be proved that the system is stable and its state x
will decay toward 0 if and only if

|arg(a)| > rπ/2 (12)

Refer to the formula (10), when s turns to be 0, the
linear fractional-order system appears as

s0 + β0 I
r
t s0 = 0 (13)

Take the r th order Caputo derivative of the above
equation by using the Property 1, there is

0D
r
t s0 = −βs0 (14)

Considering 0 < r < 1 in this work, one has
0 < rπ/2 < π/2. Besides, since β > 0, it is readily
shown that |arg(−β)| = π > rπ/2 holds. According
to Lemma 1, it is not different to gain that the sys-
tem (14) is stable and its state s0 will converge toward
0 when t → ∞.

So far, it can be seen that if s converges toward 0
as t → ∞, then, one has lim

t→∞ s0 = 0, which further

ensures e and its derivatives converge to 0 as t → ∞.
Thus, the problem to be dealt with in this paper turns to
designing a suitable controller to make sure that s → 0
as t → ∞.

Remark 2 It is noted that if we design (10) as s = s0 +
�

∫ t
0 s0dτ with � > 0, an integer-order control method

can be established refer to [16]. Since the integer-order
method has the similar design and proof process with
the FOCM in this paper, it will not be elaborated any
more.

To continue the analysis, integrate (2) and (10), then,
the following formula can be gained

ṡ =g(X)u + f (X) − x∗(n) + αn−1e
(n−1) + · · ·

+ α1e
(1) + β

d

dt
0 I

r
t s0

(15)

where d
dt 0 I

r
t s0 can be calculated. Let f (X) − x∗(n) +

αn−1e(n−1) +· · ·+α1e(1) +β d
dt 0 I

r
t s0 be h(X, X∗) for

simplification, one has

ṡ = gu + h(X, X∗) (16)

By uniting like terms in h(·), it can be seen that there
exists bounded uncertain constant term in h, which has
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|ω0|+|−x∗(n)|+|αn−1x∗(n−1)|+· · ·+|α1x∗(1)| ≤ b0.
Similarly, x and its derivatives can be extracted with
b1 = |α1| + |ω2|, b2 = |α2| + |ω3|, · · · , bn−1 =
|αn−1| + |ωn|. Then one has

|h| ≤b0 + b1|x (1)| + · · · + bn−1|x (n−1)|
+ β| d

dt
0 I

r
t s0| + ω1|x | ≤ bϕ

(17)

in which bi ≥ 0, i = 0, 1, · · · n − 1. b is an unknown
constant satisfying b = max{b0, b1, . . . , bn−1, β, ω1},
and ϕ = 1 + |x (1)| + · · · + |x (n−1)| + | ddt 0 I rt s0| + |x |.
Then, the following theorem can be put forward.

Theorem 1 Consider the general system described by
formula (2) with healthy actuator. If the controller is
designed as

u = −c0s − b̂ϕsign(s) (18)
˙̂b = μ0ϕ|s| (19)

in which c0 > 0 andμ0 > 0 are chosen by the designer,
and b̂ is the estimation of b, the asymptotically stable
tracking of the system can be ensured.

Proof Choose Lyapunov function candidate as

V = 1

2
s2 + 1

2λμ0
(b − λb̂)2 (20)

then the derivative of the above equation can be gained
that

V̇ = sṡ −
˙̂b

μ0
(b − λb̂) (21)

By utilizing formula (16), there is

V̇ = gus + hs −
˙̂b

μ0
(b − λb̂) (22)

Then, one can developed by (18) with Assumption 1
that

V̇ ≤ −c0λs
2 − λb̂ϕ|s| + bϕ|s| −

˙̂b
μ0

(b − λb̂) (23)

where s ·sign(s) = |s| and |h| ≤ bϕ are applied. Then,
the following formula can be obtained with (19) that

V̇ ≤ −c0λs
2 ≤ 0 (24)

Thus, it can be gained that V ∈ �∞, which further
ensures that s ∈ �∞ and b̂ ∈ �∞. Hence, e and its
derivatives (up to (n−1)th order) are bounded accord-
ing to the analysis above. Then, one has ϕ ∈ �∞ and
u ∈ �∞, and it can be readily shown that ṡ ∈ �∞, which

means s is uniformly continuous. Simultaneously, it has∫ t
0 c0λs

2dε ≤ V (0) < ∞. Then, it can be concluded
that s → 0 as t → ∞ with Barbalat theorem. Finally,
e and its derivatives converge to 0 when t → ∞ can
be gained by Lemma 1 and the aforementioned analy-
sis, which means the asymptotically stable tracking of
the system can be guaranteed by the proposed control
method. �	
Remark 3 It is worth noting that although it is difficult
to acquire the exact value of b, we can easily calculate
ϕ, which contains some core information of h.

3.2 Controller design considering actuator failures
with linear characteristics (ua = ρu + δ)

In this subsection, the controller is designed to achieve
control objective and simultaneously cope with the
actuator failures. Specifically, combine (3) and (10),
the following equation can be drawn that

ṡ =g(X)ρu + g(X)δ + f (X) − x∗(n)

+ αn−1e
(n−1) + · · · + α1e

(1) + β
d

dt
0 I

r
t s0

(25)

To simplify the above formula, let g(X)δ + f (X)−
x∗(n) + αn−1e(n−1) + · · · + α1e(1) + β d

dt 0 I
r
t s0 be

y(X, X∗) like before, there is
ṡ = gρu + y(X, X∗) (26)

From the aforementioned analysis and assumptions,
we can similarly have

|y| ≤m0 + m1|x (1)| + · · · + mn−1|x (n−1)|
+ β| d

dt
0 I

r
t s0| + ω|x | ≤ mϕ

(27)

where m = max{m0,m1, . . . ,mn−1, β, ω1} is an
uncertain constant, andϕ = 1+|x (1)|+· · ·+|x (n−1)|+
| ddt 0 I rt s0| + |x | has the same definition as before.
Besides, make gρ be σ , then σ > 0 can be concluded
from Assumption 1 and the above analysis, and one
has 0 < σ ≤ |σ | ≤ σ̄ < ∞, in which σ and σ̄ are
unknown positive constants. Then here comes

ṡ = σu + y(·) (28)

thus the theorem can be drawn below.

Theorem 2 If the general system is considered as
described in formula (3), it can be proved that the fol-
lowing controller can guarantee asymptotically stable
tracking of the system
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u = −d0s − m̂ϕsign(s) (29)
˙̂m = η0ϕ|s| (30)

where d0 > 0 and η0 > 0 are control parameters
selected by the designer, and m̂ is the estimation of m.

Proof The Lyapunov function candidate is selected as

V = 1

2
s2 + 1

2ση0
(m − σ m̂)2 (31)

Then, treat the above equation like before and simul-
taneously utilize formula (29) and (30), we can finally
gain

V̇ ≤ −d0σ s
2 ≤ 0 (32)

together with the fact that
∫ t
0 d0σ s

2dε ≤ V (0) < ∞,
similar result can be gained following the same argu-
ment as the proof of Theorem 1. �	

3.3 Controller design considering actuator failures
with nonlinear characteristics (ua = ρψ(u) + ζ )

With taking actuator characteristics like asymmetric
saturation and asymmetric dead zone into considera-
tion, this subsection focuses on controller design when
the system is a non-affine nonlinear system. Recall the
dynamic system described by (4), a smooth function
χ(u) is proposed to approximate the nonlinear func-
tion ψ(u) [39], which has

χ(u) = u� eγ u − u� e−γ u

eγ u + e−γ u
(33)

Note that γ > 0 is chosen by the designer and proba-
bly leads to different approximation results with differ-
ent values. Besides, u� > 0 is the uncertain saturation
value of the function. In line with Eq. (33), one has

ψ(u) = χ(u) + θ(u) (34)

where θ(u) refers to the approximation error and satis-
fies 0 < |θ(u)| ≤ θ0 < ∞, in which θ0 is an unknown
constant. Then, the LagrangeMeanValue Theorem can
be applied since χ(u) is a smooth and continues func-
tion, that is

χ(u) − χ(0) = χ ′(ξ)u (35)

with χ ′(ξ) = ∂χ
∂u |u=ε. It should be noted that if u > 0,

ξ ∈ (0, u), otherwise, if u < 0, there is ξ ∈ (u, 0).
Then, the system dynamic model can be further gained

ẋk = xk+1, k = 1, 2, . . . , n − 1

ẋn = gρχ ′(ξ)u + gρθ(u) + gζ + f (X)
(36)

in which χ(0) = 0 is applied. With the filtered variable
proposed as (10), there is

ṡ =gρχ ′(ξ)u + gρθ(u) + gζ + f (X) − x∗(n)

+ αn−1e
(n−1) + · · · + α1e

(1) + β
d

dt
0 I

r
t s0

(37)

Considering the assumptions and analysis, the equa-
tion above is similarly dealt with as before, then

ṡ = gρχ ′(ξ)u + q(X, X∗) (38)

can be obtained, which has

|q| ≤v0 + v1|x (1)| + · · · + vn−1|x (n−1)|
+ β| d

dt
0 I

r
t s0| + ω|x | ≤ vϕ

(39)

with v = max{v0, v1, . . . , vn−1, β, ω}, and ϕ has the
same definition as before. For simplification, make
gρχ ′(ξ) be τ , then one has

ṡ = τu + q(·) (40)

Since τ can be either positive or negative, it is
assumed that τ > 0 here without loss of generality,
and there exist positive constants τ and τ̄ satisfying
0 < τ ≤ |τ | ≤ τ̄ < ∞. Thus, the theorem can be put
forward.

Theorem 3 Consider the system described by for-
mula (4). The controller is designed as

u = −k0s − v̂ϕsign(s) (41)

v̇ = ι0ϕ|s| (42)

where k0 > 0 and ι0 > 0 are selected by the designer,
v̂ is the estimation of v, then the asymptotically stable
tracking of the system can be ensured.

Proof Choose Lyapunov function candidate as

V = 1

2
s2 + 1

2τ ι0
(v − τ v̂)2 (43)

Then, treat the formula in the similar way, it can be
finally concluded that

V̇ ≤ −k0τ s
2 ≤ 0 (44)

With
∫ t
0 k0τ s

2dε ≤ V (0) < ∞, the conclusion can
be drawn by utilizing the same argument in the proof
of Theorem 1. �	
Remark 4 From all above analysis, it can be concluded
that the proposed control methods are in the simi-
lar forms under different actuator conditions, which
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Fig. 2 The schematic diagram of the inverted pendulum system

means they can cope with different actuator situations
only by adjusting control parameters. Besides, the con-
trollers do not involve detailed information of the sys-
tem except the measurable and known amount and are
provided with simple structure which are easy to be
established. All these advantages make the FOCMs
proposed in this paper have a potential in applications.

4 Simulation studies

4.1 Simulation results

Comparison of the methods in the simulation part is
the comparison of the integer-order control method and
the fractional-order control method established in this
paper, and the comparison between the two kinds of
methods and the traditional PID method. As Fig. 2
shows, the inverted pendulum system is adopted for
the validation of the theorems, since it is a typical mul-
tivariate and nonlinear system, which has the dynamic
model taken from [40]:

ẋ1 = x2

ẋ2 = h(X)ua + f (X)
(45)

where x1 and x2 represent the swing angle and swing
speed, respectively, and X = [x1, x2]T is the state vec-
tor. To simplify the following analysis, it is defined that
x1 = x . ua is the actual control input of the system.
h(X) is the uncertain control gain which has

h(X) = cos(x)/(mc + m)

l(4/3 − mcos2x/(mc + m))
(46)

and f (X) represents lumped uncertainties that

f (X) = gsinx − mlẋ2cosxsinx/(mc + m)

l(4/3 − mcos2x/(mc + m))
(47)

For the above analysis, g is gravitational accelera-
tion. mc is the mass of the car while m is the mass
of the pendulum. l represents half length of the pen-
dulum. It should be mentioned that, in fact, h(X) and
f (X) can be selected in other forms as long as they
satisfy the assumptions, and the designed methods are
still applicable. The system parameters are chosen as
g = 9.8m/s2, mc = 1kg, m = 0.1kg, l = 0.5m,
which are only used for simulation and not involved in
the controller design.

Dealwith the invertedpendulumsystemasdescribed
before. Similarly, three actuator conditions are sep-
arately considered, and fractional-order controller,
integer-order controller and traditional PID controller
are compared under each condition. It should be men-
tioned that during the simulation process, all the control
parameters are selected in principle to gain the best pos-
sible simulation results so as to make the conclusions
more persuasive. Specifically, all the selected parame-
ters are presented in Table 1.

Condition 1 The inverted pendulum system with
healthy actuator (ua = u)

(a)Fractional-order controllerFirstly, the fractional-
order filtered variables s0 and s are chosen as

s0 = αe + ė (48)

s = s0 + β0 I
r
t s0 (49)

and the control laws can be finally concluded below:

u = −c1s − p̂κ1sign(s) (50)
˙̂p = μ1κ1|s| (51)

here κ1 > 0 is the scale function which has the form as
κ1 = 1+ |x | + |ẋ | + |sinx | + |cosx | + | ddt 0 I rt s0|. p̂ is
the estimation of the uncertain parameter p.

(b) Integer-order controllerFor comparison, an integer-
order control method is also proposed. Specifically,
choose the integer-order filtered variable as

s̄ = s0 + �

∫ t

0
s0 dτ (52)

in which s0 has the same structure as (48). Treat the
inverted pendulum system in the same way, then the
integer-order controller is designed to achieve asymp-
totically stable tracking of the system that
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Table 1 Values of control parameters

Condition Method

Fractional-order Integer-order PID

Condition 1 α = 1, β = 9, c1 = 100, μ1 = 1, r = 0.9 α = 3.3, � = 1, c2 = 100, μ2 = 1 kp = 120, ki = 1, kd = 5

Condition 2 α = 1, β = 7, d1 = 100, η1 = 1, r = 0.9 α = 4.2, � = 1, d2 = 100, η2 = 1 kp = 150, ki = 1, kd = 5.5

Condition 3 α = 1, β = 7, k1 = 100, ι1 = 1, r = 0.95 α = 2.8, � = 1, k2 = 150, ι2 = 1 kp = 160, ki = 1, kd = 6.5

Fig. 3 Tracking results and
errors under healthy
actuator

(c) (d)

(a) (b)

u = −c2s̄ − p̂κ2sign(s̄) (53)
˙̂p = μ2κ2|s̄| (54)

with κ2 = 1 + |x | + |ẋ | + |sinx | + |cosx |.
(c) PID controller In addition, traditional PID con-

trol method is also tested on the inverted pendulum sys-
tem during the simulation for contrast, and the param-
eters can be determined by continuous tuning.

As is shown in Fig. 3, it can be clearly seen that
when the actuator is completely healthy, the three con-
trol methods can achieve the tracking control objec-
tive while the fractional-order control scheme ensures
better control performance. Specifically, in Fig. 3a, c
the enlarged parts make it obvious that fractional-order
scheme realizesmore precise tracking results than other

two methods. More intuitive results can be seen from
Fig. 3b, d, where higher control accuracy of the devel-
oped FOCM is enlarged. It is shown that the tracking
errors with FOCM are smaller than the errors gained
by integer-order andPIDmethod.Especially, compared
with PID controller, the FC-based method shows great
advantages in smaller overshoot and greater stability,
proving its feasibility in practical nonlinear systems.

Condition 2 Considering actuator failureswith linear
characteristics (ua = ρu + δ)

In this condition, the actuator is assumed to be partly
invalid so as to verify the capacity of fault tolerance of
the designed controller. The selection of ρ and δ is
shown in Fig. 4, from which it can be seen that the

123



www.manaraa.com

388 X. Hu et al.

(a) (b)

Fig. 4 Actuator faults simulated

health indicator is time-varying and brings uncertain
interference to the system. It should be mentioned that
they can also be chosen in other formswith the assump-
tions. As is shown in Fig. 5a, b, similar with Con-
dition 1, the fractional-order controller realizes more
precise tracking of the ideal system trajectories than
other two control methods. Additionally, in (d), larger
chattering phenomenon appears with the PID control
method when the actuator failures exist. However, the
FOCM can still guarantee stable tracking with high-
est precision and smallest vibration. Furthermore, as
the FOCM achieves better control performance than
other twocontrol schemesunder uncertain actuator fail-

ures and disturbances, the stronger robustness and bet-
ter anti-interference characteristics of fractional-order
method can also be proved.

Condition 3 Considering actuator failures with non-
linear characteristics (ua = ρψ(u) + ζ )

In this case, ρ is the same as that in Condition 2 and
ζ is selected identical to δ.ψ(u) adopted for simulation
is that

ψ(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−9 u < −9

1.5(u + 3) −9 ≤ u < −3

0 −3 ≤ u < 0

0 0 ≤ u < 5

2u − 10 5 ≤ u < 10

10 u ≥ 10

(55)

It can be observed from Fig. 6 that the superiority of
FOCM is even more evident when the actuator is con-
sidered with nonlinear characteristics like asymmetric
saturation and asymmetric dead zone. Larger track-
ing errors and more chattering phenomenon appear
with integer-order and PID schemes; however, the
fractional-order method still ensures highest control

Fig. 5 Tracking results and
errors considering actuator
failures with linear
characteristics

(a) (b)

(c) (d)
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Fig. 6 Tracking results and
errors considering actuator
failures with nonlinear
characteristics

(a) (b)

(c) (d)

(a) (b) (c)

Fig. 7 The control action of the controllers under three cases

precision. Especially, in Fig. 6c, d, there exists obvious
chattering in the integer-order and PID cases when the
system switches the speed direction, and it takes more
than 1s for the system to overcome the perturbation.
Yet fractional-order method has only slight vibration
and can quickly restore stable state, which means that
the FOCM has a better capacity to deal with the exter-
nal disturbances in spite of the input constrains. This
further certifies stronger robustness and better anti-
interference ability of the developed methods.

Furthermore, the control action of the three con-
trollers under three different conditions is presented
in Fig. 7, and in order to quantitatively describe the
performance of the controllers in terms of energy con-
sumption, the values of RMS are calculated, respec-
tively, which can be seen in Table 2. It is shown that
the FOCM achieves the smallest RMS in each condi-
tion, indicating the least energy consumption during
the control process, which further proves its potential
in applications.
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Table 2 RMS of the controllers under three cases

Condition method

Fractional-order Integer-order PID

Condition 1 0.0013 0.0014 0.0015

Condition 2 0.0014 0.0015 0.0016

Condition 3 0.0231 0.0237 0.0243

Remark 5 In fact, the control parameters involved in
the developed FOCMs can be set by the designer quite
arbitrarily and do not need continues tuning as long as
they satisfy the preset requirement (e.g., α > 0, 0 <

r < 1).However,we try to achieve a best possible result
for comparison. The problem of how the control perfor-
mance specifically depends on these control parameters
is not discussed in this paper, which is expected to be
solved in the future work.

4.2 Analysis of advantages

From the above simulation results, it can be concluded
that compared with traditional PID method, fractional-
order control scheme can realize the tracking con-
trol objective with higher control accuracy, less vibra-
tion, smaller overshoot and stronger robustness. This
is because the calculation of fractional calculus can be
seen as integral transformation of the function which
has 0 I rt f (t) = ∫ t

0 φ(t − τ) · f (τ )dτ , where the weight
function has the properties that lim

t→0+ φ(·) = ∞ and

lim
t→∞ φ(·) = 0. Thus, the FOCM makes appropri-

ate corrections with the help of FC while PID con-
trol implements excessive control actions. Besides, the
FOCM has a capacity of fault tolerance and is more
effective for the complicated nonlinear systems. As for
the integer-order control method, it can also be proved
that all the fractional-order cases perform better than
the integer-order ones.

Recall the chosen of s in formula (49). When s
is proved to be asymptotically stable, we gain the
fractional-order linear equation as

0D
r
t s0 + βs0 = 0 (56)

which has the solution as

s0(t) = Tr,1(t)s0(0) (57)

where

Tr,1(t) =
∞∑
k=0

(−β)k trk

Γ (rk + 1)
≈ 1

Γ (1 − r)
(−β)−1t−r

isMittag-Leffler function [38]. Especially,when r turns
to be 1,whichmeans the system is described by integer-
order, one has

T1,1(t) =
∞∑
k=0

(−β)k tk

Γ (k + 1)
=

∞∑
k=0

(−β)k tk

k! = exp(−βt),

thus it has readily shown that the fractional-order sys-
tem decays toward 0 in the form of t−r , while the decay
type of integer-order system is exp(−βt). It illustrates
that the energy transfer is slowly with the help of FC.
Thus, when the overshoot or disturbances appears, the
FOCMs implement the control action gently to make
suitable corrections and can make up the shortcom-
ings caused by the high-frequency actuator switching.
Then, smaller error and less oscillation can be achieved,
which makes the fractional-order controller has higher
precision, better anti-interference ability and stronger
robustness than integer-order methods.

5 Conclusion

Considering the nonlinearities and uncertainties of
a class of general nonlinear systems, a series of
fractional-order control methods (FOCMs) are put for-
ward, which are adaptive, robust, fault-tolerant and do
not refer to detailed information of the system model.
Based on the fractional calculus (FC), the fractional-
order controller has advantages in higher control pre-
cision, better anti-interference ability and stronger
robustness. Three different actuator conditions are con-
sidered, for which, the FOCMs are established, respec-
tively, and Lyapunov stability proof andMatignons sta-
bility theorem are combined to illustrate the effective-
ness of them. The inverted pendulum system is chosen
as simulation object, and the fractional-order schemes
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are compared with both integer-order and PID control
methods. Simulation results have proved the superior-
ity of the FC-based FOCMs, which is consistent with
the theoretical analysis.
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